Applied Data Science Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

Dynamic Heterogeneous Graph Neural Network for Real-time
Event Prediction

Wenjuan Luo!, Han Zhang!, Xiaodi Yang!, Lin Bo?, Xiaoqing Yang'
Zang Li!, Xiaohu Qie?, Jieping Ye!
1Al Labs, Didi Chuxing, Beijing, China
’Didi Chuxing, Beijing, China
{luowenjuan,arsenezhang,yangxiaodi_i,bolinlin,yangxiaoqing,lizang,tiger.qie,yejieping}@didiglobal.com

ABSTRACT

Customer response prediction is critical in many industrial applica-
tions such as online advertising and recommendations. In particular,
the challenge is greater for ride-hailing platforms such as Uber and
DiDi, because the response prediction models need to consider his-
torical and real-time event information in the physical environment,
such as surrounding traffic and supply and demand conditions. In
this paper, we propose to use dynamically constructed heteroge-
neous graph for each ongoing event to encode the attributes of
the event and its surroundings. In addition, we propose a multi-
layer graph neural network model to learn the impact of historical
actions and the surrounding environment on the current events,
and generate an effective event representation to improve the ac-
curacy of the response model. We investigate this framework to
two practical applications on the DiDi platform. Offline and online
experiments show that the framework can significantly improve
prediction performance. The framework has been deployed in the
online production environment and serves tens of millions of event
prediction requests every day.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; Data min-
ing; « Computing methodologies — Neural networks.

KEYWORDS

Real-time event embedding; Heterogeneous graph neural networks;
Dynamic graph embedding

ACM Reference Format:

Wenjuan Luo!, Han Zhang!, Xiaodi Yang?, Lin Bo!, Xiaoqing Yang! and Zang
Li', Xiaohu Qie?, Jieping Ye'. 2020. Dynamic Heterogeneous Graph Neural
Network for Real-time Event Prediction. In Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),
August 23-27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3394486.3403373

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08....$15.00
https://doi.org/10.1145/3394486.3403373

3213

¥ Di Di Xin
< Cheng Hai D

Pick up after

: I
- S e
o
Express. | ®
Pt U e o 180500 s s

sopron. 39

1 Your review will help the driver
! perform better oo
Request an express car Cancellation Poficy >

(a) PreView and Request (b) Cancel_Order (c) Finish_Order

Figure 1: Illustration of Ride-hailing Events

1 INTRODUCTION

The development of ride-hailing platforms makes people’s travel
much more convenient. In ride-hailing platforms such as Uber and
DiDi, once a user provides the pick-up and drop-off locations, the
ride-hailing APP pops up a PreView page to show the route, service
type and estimated price (Figure 1a). We use the term, PreView, to
refer to the event in which a PreView page is viewed by a user. The
user can then decide whether to click the Request button to request
a ride or not. Once the user makes a request, the platform will
assign an express or premier car according to the user’s choice. We
name the event triggered by the user as Request. Before the driver
arrives at the pick-up location, the passenger can cancel the order
if his/her plan has changed as depicted in Figure 1b. This event is
called Cancel_Order. Otherwise, the passenger will successfully
arrive at the destination and pay for the trip as shown in Figure 1c,
which is named as Finish_Order.

In the advertising field, it is crucial to determine which impres-
sions to bid on and the bid amount by predicting the probability of
user response such as click and conversion given an ad-impression.
Similarly in a ride-hailing platform, the prediction of the PreView
event conversion rate is of great importance for down-stream strate-
gies such as supply and demand regulation, transportation sched-
uling, carpool route matching, etc. In this paper, we study how to
model a PreView event and estimate the probability of a passenger
clicking the Request button.

https://doi.org/10.1145/3394486.3403373
https://doi.org/10.1145/3394486.3403373

Applied Data Science Track Paper

Figure 2 illustrates the major events involved in one passenger’s
ride-hailing decision process, where the colored circles denote vari-
ous user actions. Specifically, in this paper, we utilize the word POI
(Point Of Interest) to denote all the possible pick-up and drop-off
points in a map. As shown in the figure, different user actions occur
simultaneously at different POIs.

Typically, whether or not the passenger clicks the Request button
is affected by many factors, such as the spending habits of the user,
the weather condition and the supply and demand conditions at that
time. While some explicit characteristics (e.g. the distance between
current location and pick-up location, weather and time) can be
extracted from various data sources, other intrinsic characteristics,
such as the willingness to wait and pay, and satisfaction with the
route are much harder to extract. One solution is to introduce
proxy signals from historical and contemporary observations such
as historical transaction-related actions, and real-time events that
occur in the surrounding environment.

For example, a passenger may have completed multiple orders
before current PreView; we can use these historical signals for
capturing implicit features such as user preferences on service
types, willingness to pay and so on. Specifically, the passenger
is more willing to issue the request on the PreViews similar to
those that have been converted to Requests. At the same time,
negative signals can also be extracted from those PreViews that
have not been converted. To be able to calculate similarities between
PreViews, we propose to use embeddings, low-dimensional vector
representations learned from historical data. In addition, we also
want our embeddings to capture the supply and demand conditions
in the surrounding area at that time. To this end, we propose to
investigate events that occurred simultaneously in the vicinity.
For example, if a lot of demands around the region have not been
fulfilled, then the current supplies and demands are unbalanced,;
if there are many cancellations (Cancel_Order) around, then the
road conditions are more congested, or the expected waiting time
of arrival is long. Obviously, these historical data and real-time
observations can be used as input factors for the prediction model.

The above-mentioned events, whether historical or ongoing,
have various relationships with the current event to be analyzed,
and the degree of relevance to the current event is also different. It
is natural to use heterogeneous graphs to represent these events
and relationships. One key advantage of heterogeneous graph rep-
resentations is that graph embedding [5, 8, 18, 23, 25, 29, 31] can
be used to encode and represent the semantics in these graphs. In
recent years, graph embedding has achieved great success in many
fields [28] [7]. For example, embedding items, users or preferences
has been used to improve CTR predictions, searching or ranking
models [19, 30, 32, 33]. However, it is still challenging to embed
real-time events in dynamically changing heterogeneous graphs:

1 For each new event the system needs to dynamically
construct a graph around the event. Each time a new
event occurs, it is necessary to construct a graph dynami-
cally by collecting the historical events of the corresponding
passengers and the events that are happening in the sur-
rounding area.

2 The entities and relationships in the graph are hetero-
geneous. There exist different types of events (e.g., PreView,

3214

KDD 20, August 23-27, 2020, Virtual Event, USA

FERRAZOPO

.. Passengerg s .

> Future

ks
PriceView | ‘ i

s
PriceView | ¥ H
H-session H i
. . Request |
—— Simultancous arrival a i
-‘~ Simultaneous departure

Cancel_Order{" ! Finish_Ord

H-session

Figure 2: Typical Ride-hailing Event Flows: Red, green, blue
and purple nodes represent PreView, Request, Cancel_Order
and Finish_Order, respectively. A passenger may have multi-
ple transactions on the platform, involving different events.
In addition, at the same time as an event, there may be many
h-sessions and events happening in the surrounding area.

Request, etc.) and relationships (e.g., the same transaction,
the same passenger, the same origin, etc.) between events.
Different entities and relationships have different ef-
fects on the events of interest. For example, historical
events happened at similar origin and destination are more
relevant to the current event. And events within the same
transaction are highly relevant to each other.

Large-scale real-time event modeling. With tens of mil-
lions of events being generated every day, the system needs
to be able to construct a graph for each event in real time
and generate corresponding representations efficiently.

Instead of embedding items during the training phase, we pro-
pose a novel learning framework to generate event representations
in real time so that we can capture live changes in user behavior
and the surrounding environment. The embedding of each entity is
generated in an inductive manner based on graph neural networks
(GNN5s) [13]. Note that entities discussed in this paper include
events, items, user actions, etc. Specifically, our method mainly
consists of the following steps: 1. construct a dynamic heteroge-
neous graph for each event; 2. generate event embeddings using
our proposed embedding algorithm for heterogeneous graphs; 3.
make real-time predictions based on entity embeddings. Before
we get into the details, we introduce a concept called heteroge-
neous session (denoted as h-session). An h-session is a collection of
chronologically related heterogeneous events for the same transac-
tion. In our case, in a ride-hailing transaction, the user may trigger
certain events like Request, Finish_Order and Cancel_Order after
the PreView event is issued. These events, which belong to the same
h-session, describe a user’s complete transaction behavior on the
ride-hailing platform.

Based on the workflow of constructing heterogeneous graphs
for events, we propose a novel graph learning algorithm called
Real-time Event Graph Neural Network (REGNN) to generate event
embedding. We summarize our main contributions as follows:

1 Propose a workflow for constructing a heterogeneous
graph centered on the event for each real-time event

Applied Data Science Track Paper

Table 1: PreView Event Notations

Symbols ‘ Definitions and Descriptions
p a passenger entity
0 an entity for pick-up (origin)
d an entity for drop-off (destination)
Heterogeneous Graph at time T,
HetGy T about entity x , e.g. p,0,d
yr label of event at time T
Pr PreView event at time T
Rt Request event at time T
Cr Cancel_Order event at time T
Fr Finish_Order event at time T
Er dynamic graph embedding for event at time T
o4 the attention weight of the embedding
0 the model parameters
[y the concatenation of two vectors
° the Hadamard product of two matrices

that needs to be predicted. The process explores events
from various perspectives, including temporal and spatial
dimensions.
Propose an attention based GNN model to embed the
dynamically generated graph for each event. A novel
multi-layered graph structure and different graph atten-
tion [26] operators at each level are proposed to encode
events and their relationships.
Experiments show that arecurrent neural network can
further capture more temporal dependencies among
events. Additionally, in our online implementation, past
event representations are stored, and then will be used when
computing the temporal dependencies for subsequent events.
4 By applying this framework to two practical applica-
tions (see SUPPLEMENT) on the DiDi platform, we show
that the framework is widely applicable to various pre-
diction problems of real-time events. The framework
has been deployed in DiDi’s online production environment
and serves tens of millions of event prediction requests every

day.

(s}

w

2 PROBLEM FORMULATION

In this section, we introduce the definition of PreView related con-
cepts and use dynamic heterogeneous graphs to formalize the prob-
lem of event embedding and event sequence learning. Specifically,
a heterogeneous graph is dynamically created for each real-time
event that needs to be predicted. The graph contains the events in
related h-sessions and other related entities. The edges of the graph
represent various complex relationships between the vertices in
the graph, such as sequential relationships, spatial position rela-
tionships, and other logical relationships, etc. Table 1 summarizes
all notations used in the paper.

2.1 PreView Conversion Prediction

As described in [31], a graph is modeled as G = (V, Eg, Oy, RE)
with a node mapping function Vg — Oy and an edge mapping
function Eg — Rg, where each node in V; belongs to a type in Oy,
and each edge in Eg belongs to a type in Rg. G is a homogeneous

3215

KDD 20, August 23-27, 2020, Virtual Event, USA

graph if the number of node types |Oy| = 1 and the number of
edge types |Rg| = 1. In a heterogeneous graph,the number of node
types or the number of edge types is greater than one.

Definition 2.1 (PreView Conversion Prediction). Given a PreView
event Pr = (p,0,d,T) at time T, from origin o to destination d,
our goal is to estimate the probability yr of the user p to trigger
event Request by embedding a series of dynamic heterogeneous
networks in history [Gp;, Gp;_,, ..., Gp;_y.,] where Gp, denotes
the dynamic heterogeneous graph for event P;, fort = T — N +
1,...,T.

Given a formulated event P, Gp consists of different kinds of
events or items. Our framework aims to embed the heterogeneous
graph into a low dimensional vector E € R4 where dim is the
embedding dimension size. In particular, the embedding network

needs to learn the following function:

F(Gp) — E o))
Given a time series of events, with embeddings obtained from

Equation (1), the top layer in our model aims to learn a model Gy
with parameters 6 as follows:

Go : [Er neys-nEr] — Yy @)

where y,. is prediction target for the event at timestamp T, E,
denotes the embedding vector for the event at timestamp ¢, and N
indicates the sequence length of the time series.

3 METHODOLOGY

In the following, we introduce the proposed framework for real-time
event embedding. The core idea is to analyze the various attributes
of the event, and based on these attributes, we then explore other
events that may have an impact or have similar semantics. In our
case, for simplicity, we only consider the most relevant attributes
of a PreView event: passenger, timestamp, origin and destination.
According to our previous discussion, from the passenger perspec-
tive we can obtain information from the past behavior events; and
from the two perspectives of the origin and destination, we can ob-
tain spatial representation by observing and synthesizing the event
information around these two locations. Specifically, our real-time
event embedding workflow is shown in Figure 3.

e First, Given the current PreView event Pt = (p,0,d, T), we
can generate a heterogeneous graph according to the follow-
ing process:

— Passenger perspective: we select the passenger’s latest
N PreView events within one week before time T, to-
gether with their corresponding Request events (if any),
Finish_Order events (if any), Cancel_Order events (if any).
We create corresponding neighbor nodes in the graph for
these events. This subgraph about passenger p is denoted
as HetGp .

— Origin and destination perspective: from all the PreView
events happening simultaneously, we select PreView events
who share the same origin of Pr within x minutes (the time
length) before time T, together with their corresponding
Request, Finish_Order and Cancel_Order events (if any).
These events are added to the graph as an origin point

Applied Data Science Track Paper

Element,
Event Element,

H
H

Element,, 8 8 E %

Element Neighbor Heterogeneous

Extraction Selection Graph
Construction

KDD 20, August 23-27, 2020, Virtual Event, USA

Multi-layer
GATs

Cross Graph
GATs

Prediction

Figure 3: Framework of Our Model. First, analyze event attributes and explore other related or similar events. Afterwards,
heterogeneous subgraphs are built carefully and then GATs at different levels are performed for down-stream tasks.

subgraph HetG, 1. On the other hand, those PreViews of
which the destination is Pr’s origin point within x min-
utes (the time length) before time T, together with their
corresponding Request, Finish_Order and Cancel_Order
events (if any) form the destination subgraph HetGg .
Note that when serving online, to aggregate the spatiotem-
poral information of historical PreViews, we learn the hid-
den state of the historical event sequence through RNN
and save the hidden state in a carefully designed key-value
store, so that the next sequence of event sequences can be
quickly predicted and updated.

Second, according to the relationship between these events
and the current event Pr, add the corresponding types of
edges. For example, the relationship that belongs to the same
h-session, the sequence relationship between the h-sessions,
etc.

Afterwards, with the constructed heterogeneous subgraphs,
REGNN is performed to generate P7’s real-time event em-
bedding. The details will be introduced in Section 3.2.
Finally, the generated event embedding is used as input fea-
tures for the down-stream prediction tasks.

Figure 4 shows the detail of the PreView event modeling. In
general, compared to previous GraphSAGE [10] like methods, our
framework is a comprehensive multi-layer model, in which the
bottom three layers are composed of graph attentions [26] (for
heterogeneous neighborhood feature aggregation inside each h-
session and across different kinds of h-sessions), and the top layer
is composed of GRUs [12] for sequential structure learning.

3.1 Dynamic Heterogeneous Graph
Construction
In our framework, the key idea of generating embedding for Pre-

View is to aggregate information from basic features (i.e., estimated
time of arrival, estimated price, etc.) and Pr’s neighbors.

3.1.1 Dynamic PreView Graph Generation. As described in Figure 2,
the embedding of a PreView event Pr is influenced by three different
heterogeneous subgraphs. Formally, the dynamic heterogeneous

3216

graph Gp,. for Py is given as follows,

Gp; = HetGp 1 + HetGo 7 + HetGy 1 (3)

where HetGp 1, HetG, 7 and HetGy 1 are passenger subgraph,
origin subgraph and destination subgraph, and + denotes the graph
join operators, defined as follows: Suppose G = G; + G2,G1 =
(V1,E1), G2 = (V2, E2), G has the node set V; U V3, and the edge set
E1 U Ep. HetGp 1, HetG,, 7 and HetGy 1 are constructed by the
following procedure:

Graph construction inside h-session (intra-session) First,
we connect events in the same session together to form a subgraph.
For example, a successful transaction includes events PreView, Re-
quest and Finish_Order. For more efficient graph calculations and
subsequent snapshots, we can treat this h-session subgraph as a
virtual node and explore the relationships between these virtual
nodes.

Graph construction across h-sessions (inter-session) More-
over, to analyze the impact from previous h-sessions to the target
PreView, edges are connected between previous h-Sessions to the
target PreView. However, h-sessions in different subgraphs play
different roles in analyzing the status of the target PreView, so the

: L« : IR . o
types of edges are different, i.e. “h-session, — Pr”, “h-session, —

« . d o,
Pr”, “h-sessiong — Pr”.

3.2 PreView Event Graph Embedding

As illustrated in Figure 4, Pt represents the PreView event at time
T. We build graphs around Pr with the most recent N h-sessions.
Besides, following the methods discussed earlier, we collect events
that occurred within the last 10 minutes (Pr) around the origin and
destination points and build an origin and a destination subgraph.

Specifically, we utilize different graph operators for 3 different
levels to perform dynamic graph embedding by following the se-
quential and semantic relationships between events.

GAT:s inside h-session: Within one h-session depicited in Fig-
ure 4, we perform GATs over vertices to learn knowledge from
heterogeneous events. Specifically, for one h-session, the opera-
tion GAT; mechanism is described in Figure 5, and formulated as

Applied Data Science Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

S0y

Input layer GAT across h-sessions

GAT within h-session
JASY

GAT across subgraps

(0) (2) (3) GRU Il
hh_sT‘ [] h sT hh_s-p ‘ [T] hh_sT‘ [T 1 conﬁction sigmoid label
nodefeatui es within h-session embeddmg cross h-session embedding cross subgraph embedding 1\
i

Figure 4: Architecture of the PreView Event Embedding. Vertices of different shapes represent heterogeneous events and edges
of different colors are heterogeneous edges. H_St denotes an h-session at timestamp T consisting of Pr, Rt, Fr, Ct. For H_ST,
graph operators at different granularities (GAT within h-session, GAT across h-sessions within the same subgraph and GAT

across subgraphs) are performed to update H_S7’s hidden states, shown as h(h‘iST

ahl_s,c Ansp QnsF ah_,s,R O
Y) g
g
r . ! §
l@\?ﬁi& :
NN NN S S - @p sk
| Wee e [wie [wWafe | Woshe
fo o f f Pie R

Figure 5: GAT within h-session, f; denotes the node features
for event i with i standing for P, R, F and C. H-session embed-
ding is updated through a multi-head attention based on P,
R, Fand C.

Equation (4).
1 k k
Ho =il) af WER)
icOy

oWk - [wkR

@ W-kfi D 4)

=1 S oy oWE - [WERD @ WEF)

where @ denotes concatenation, Oy is the set of different types of
events within the same h-session, K is the total number of heads,
hgll)s denotes hidden states of h-session after GAT inside h-sessions,

and hgf)s is the initial state of the h-session, which is initialized by

the node features of PreView events. a}]: ; is the attention weight of
the k-th head computed through the attention mechanism between
h_s and event i, Wk is the attention matrix in the k-th head. As
initial event node features are heterogeneous in nature, wk s Wik
respectively work as transformation matrices of h-session and event
i (e, P, R, F, C) with initial node features as f; in the k-th head.

GATs across h-sessions: These operators perform attention
based aggregation across h-sessions on the graph. For h-sessions
in different subgraphs, the graph attention works as follows:

h®

= GAT, h“) JVE,0 <=t <= N,
hsr, phy g,) [

My, =GATo(hy)).¥1,0<=1<=N,)
® o it em
hh_sT = GAT, (h t’d), Vi, 0 <=t <= Ny

3217

where Nj, Np and Ny denote the number of different timestamps
in passenger subgraph, origin subgraph and destination subgraph,

A and h(” are hid-

h _ST-t,0 _ST-t,d

den states after GAT 1n51de the h session at time T — ¢ of passenger
subgraph, origin subgraph and destination subgraph. As indicated
in the equation, different GATs are trained for different subgraphs.
Note that subscript t starts from 0, hence self attention is also em-
ployed in the GATs across h-sessions. We formulate the attention
mechanism within passenger graph GAT, as Equation (6), while
the attentions for other subgraphs (GAT,, GAT,) are computed
similarly.

respectively. Moreover, h(l)

(2) P»k 1)
hy SSrp Z a, W hy ST—t.p
G(Wp’k [WP kh(l) WP kh(l)]) (6)
ko = h_st,p h_sT_t,p
T =
, p.k (1) p.k (1)
ZJ fyo(Wrk - [w hh?sT W hy ST ”,])
where h() denotes the hidden state of h-session after GAT

inside h-se sessmn at time T — ¢ for subgraph of passenger p, and
12
T

h s aggregates information of all its neighbors within subgraph
—T.p

of passenger p. K, is the number of heads in GAT),. WPk denotes

the attention matrix for the k-th head in the subgraph, while Wlp ok
denotes the linear transformation matrix before attention.

GATs across subgraphs: Afterwards, the global attention is
carried out as :

)

N
h)T.o

h®

g _ 30 _ (2)
hp,. = hhisT = GATg(hh?sT hs (7)

T.d

where hf)s
— T

and the final event embedding of PreView Pt after GAT cross sub-

graphs hlng is updated accordingly. GAT, aggregates information

at the global level for heterogeneous subgraphs. Concretely, the

attention mechanism for global attention GAT, for PreView event

is the final event embedding for h-session at time T,

Applied Data Science Track Paper

is designed as:

B _ K k 9.k
s, = Oz Z oWy
i€eOg ’
owok qwP R ew? hP) ®
Kk _ “T.p -1
a1 =

R E) 9.k,)
Ljeog o(WoE - [W; hh_sT‘p oW hh_sT‘i])

where Og denotes the set of different kinds of heterogeneous sub-
graphs, K is the number of heads in global attention, W9 -k denotes

the global attention matrix of head k, and ng ¥ is the transforma-
tion matrix in global attention. As indicated in the equation, all
the other subgraphs compute their attentions with respect to the
passenger graph. Furthermore, self attention is also conducted to

the passenger graph.

3.3 Event Time-series Embedding

We leverage the recurrent neural networks (RNNs) [11] to model
the temporal dependency between user past PreView events. Here
we utilize the GRU to learn the sequential embeddings as follows,

zp =0(W; -Er ® U, - hr—1)

ry = o(Wy - ET ® Uy - h1-1)

T

hr = tanh(W - Er @ U(ry o hr-1)) ©)

hr =(1—-z;)ohr_1 +z; ohr

where E7 is the final embedding of event after global attention at
time T ie., hf’r in Equation (7), and @ denotes concatenation, o
means Hadamard product, ht € R4IM js the output hidden state at
time T, while W, U are parameters to be learned.

3.4 Objective And Model Training

Given the embeddings generated in the previous sections, we mini-
mize the following loss function for the PreView conversion rate
prediction problem:

T

L==)" >y log(a(0-h)-(1-y*)log(1-a(0-h})+Al10]]; (10)
ueU t=1

where yi! denotes the label for user u at time T, and h’. denotes

the embedding for user u at time T as Equation (9), o denotes the

sigmoid function, 0 represents the parameters to learn and 1||0||2 is

the L2 regularization. Note that in our framework, the loss functions

are optimized using gradient descent.

4 EXPERIMENTS

In this section, we evaluate our framework using real-world datasets.
We first show offline experiment results and then present online
performance of our production framework. In addition, we conduct
extensive experiments to compare the influence of different sub-
graphs and also analyze hyper parameters. Besides, we generalize
our methodology to another real world problem in Section A.

4.1 Offline Experiment Results

In this section, we present the details of offline experiments com-
pared to SOTA baselines.

3218

KDD 20, August 23-27, 2020, Virtual Event, USA

4.1.1 Dataset And Experimental Setup. Our training dataset is con-
structed through a random selection of real-world PreView events
with conversion labels from online log of one week, and test dataset
is randomly selected in the same way of the following week. We
provide the details of the dataset in Table 2.

Experiment Setup: We use Adam [14] with learning rate at
0.001 for all models. The numbers of heads in multi-head attentions
are all set to 3. The number for hidden dimension of GRU in our
method is set to 100. The dimensions of DNN Layers are set to
128 X 64 X 32 before the output layer. For PreView task, we take
AUC(Area Under ROC Curve) and ACC(Classification ACCuracy)
as the metric for performance of models.

Table 2: Datasets Description For PreView Event Conversion
Prediction

dataset TrainSize TestSize FeatureSize Classes

PreView 652266 298649 64 2

4.1.2 Competitors. We compare our framework to the state-of-the-
art CTR methods (DIN [33], DIEN [32], MIMN [19]) in the scenario
of sequential user behavior modeling, as well as a state-of-the-art
session-based GNN (SRGNN [30]) method for recommendation.
Here we denote our framework as REGNN.

DNN utlizes a multi-layer DNN for prediction. It uses sum pool-
ing to integrate users’ historical embeddings. DIN is an early work
for CTR which applies attention mechanism to combine the rep-
resentation of users’ sequential behaviors and target item. DIEN
integrates GRU with attention mechanism to capture the evolution
of users’ interests and proposes an auxiliary loss from negative
sampling for better embedding learning. Specifically, we omit the
trick of negative sampling as MIMN[19]. MIMN uses a memory-
based framework because of improvements on NTM (Neural Tur-
ing Machine [6]) for user’s interest learning. SRGNN proposes a
session-based GNN to model session information and generate rec-
ommendations, which is the SOTA GNN-based method for session
based recommendation.

To fit our task to the above competitors, there exist two problems:
I) These methods aims to embed homogeneous items and II) these
methods adopt item ids to generate item embedding through neural
networks, thus they can not generate new item embedding in the
inference stage. To solve these problems, we utilize the node fea-
tures of PreView events as item embedding in these methods, and
the passenger’s historical PreView sequence works as user behavior
sequence in these models.

Table 3: Performance Of Different Methods On Preview
Event Prediction

Method AUC(mean + std) ACC(mean = std)

DNN 0.6854 + 0.0008 0.7025 + 0.0003
DIN 0.6817 = 0.0001 0.7017 = 0.0003
DIEN 0.6769 + 0.0005 0.7027 £ 0.0003
MIMN 0.6895 + 0.0002 0.7024 + 0.0002
SRGNN 0.6901 + 0.0008 0.7028 = 0.0003
REGNN 0.7684+ 0.0006 0.7369+ 0.0006

Applied Data Science Track Paper

4.1.3 Offline Performance. Specifically, we give the experimental
results in Table 3, from which we can observe: REGNN achieves
the best results on AUC and ACC. This experiment shows that
our dynamic heterogeneous graph embedding framework can ef-
fectively help the prediction model improve accuracy. As REGNN
incorporates different kinds of user events together with the com-
plex relationships between events, various hidden information (e.g.,
traffic condition) is efficiently encoded into the model. In general,
our model obtains 8.30% increments in AUC for PreView dataset
compared to the DNN baseline. This verifies the effectiveness of
our framework.

SRGNN achieves better performance than DNN, DIN, DIEN
and MIMN. SRGNN adopts GNN for session graph embedding,
which construct a homogeneous graph within one session and
utilizes GRU for time-series prediction. The better performance
of SRGNN than the rest of baselines indicates that SRGNN better
fits the PreView event embedding task compared to CTR meth-
ods. However, our REGNN differs from SRGNN in three aspects:
First, SRGNN generates homogeneous graphs for each session, yet
REGNN constructs heterogeneous graphs for each event. Second,
SRGNN only models the sequential information as edges for ses-
sion graphs, in addition, REGNN still utilizes the heterogeneous
edges between different types of events and events from different
subgraphs. Third, the GNN in SRGNN is a one-layer GCN while
REGNN learns event embedding through multi-layer GATs.

4.1.4 Ablation Study. In this section, we study the influence of
different modules in our framework. As shown in Table 4, different
subgraphs bring different degrees of improvement to the perfor-
mance of our model. For PreView event conversion prediction task,
compared to POI subgraphs, the Passenger subgraph embedding
plays a more important role, which is in line with our intuition.
Compared with the surrounding real-time traffic, together with sup-
ply and demand condition, the similar response of users to similar
events may be a more important factor for our prediction task, i.e.,
similar users of similar habits may share similar request patterns.
Meanwhile, as shown in the table, the lack of the o subgraph (origin
subgraph) contributing a 0.8% decrement to our model indicates
that passengers at the same time and space may make similar re-
quest decisions. Another observation is that the origin subgraph
(o subgraph) contributes more information than the destination
subgraph (d subgraph). This is also in line with our expectations,
because the origin subgraph describes the traffic condition at the
same time and space, while the destination subgraph depicts the
potential supply and demand in the near future. Hence, the ori-
gin subgraph is better in reflecting the demand for ride-hailing in
the surrounding area. Nevertheless, the destination subgraph can
also capture some hidden useful information and help improve the
model.

4.2 Online Results

Before deploying to production, we conduct offline training pro-
cedure for PreView dataset based on online logs of one week, and
testify the model on online logs of the next week. When serving
online, our model utilizes Redis [21] to store the last 7-day events,
and generates embeddings at real-time for down-stream tasks.

3219

KDD 20, August 23-27, 2020, Virtual Event, USA

Table 4: Influence Of Different Types Of Graphs On PreView
Dataset

Model AUC Decrement
REGNN(with all subgraphs) 0.7684 -
REGNN(w/0 o subgraph) 0.7599 0.0085
REGNN(w/o d subgraph) 0.7624 0.0060
REGNN(w/o p subgraph) 0.7098 0.0586

Regular Offline Training: Our framework is scalable and can
be used for big data training. Before deploying to production, we
randomly select 20 million PreView events within 1 week, and
generate their corresponding heterogeneous subgraphs from the
historical data in previous 7 days before the PreView events, i.e., we
use 2-week log for heterogeneous graph construction. Specifically,
we preprocess the passenger historical behaviors, and the historical
information of POIs. As mentioned before, historical heterogeneous
subgraphs consist of the latest 30 PreView events, and their cor-
responding follow-up events, i.e., Request events, Cancel_Order
events and Finish_Order events. In light of offline evaluation re-
sults, we compare the performance on PreView event conversion
prediction in the following week after the training week.

Implementation For Online Serving: The online embedding
service is event driven. As mentioned previously, we design differ-
ent Key-Value data storage for different subgraphs and maintain
the ride-hailing neighbor events in Redis. For each passenger, we
store his latest 30 Preview, Request, Cancel_Order and Finish_Order
events, respectively. Our online system subscribes a series of Kafka
topics about user events. Once an event message happened, the
user’s dynamic heterogeneous graph is updated immediately. Based
on the dynamic graph, our embedding model updates the user’s em-
bedding subsequently. To maintain different graphs for passengers,
we utilize 1TB storage for online serving.

4.2.1 PreView Event Embedding Online Results. Our framework
is already deployed online and significantly improves online pre-
diction results. Specifically, for the PreView event conversion pre-
diction, our online forecasting framework is a Gradient Boosting
Decision Tree base model [24], and utilizes our REGNN embedding
results as model input features. The online improvements are very
significant: First, REGNN features obtain very high ranking among
all the features (4 out of top 10 most important features). Sec-
ond, online AB tests show that all the generated embeddings of
REGNN bring a 3.5% improvement for the online AUC. As our event
embedding is generated in an inductive way, the new event embed-
dings are generated based on its dynamic subgraphs, and there is
no need to worry about the problem of vector space transformation,
which is often faced by traditional transductive embedding meth-
ods. As a result, our real-time PreView behavior embedding service
is already deployed in production and serves for down-stream tasks
such as conversion prediction and scheduling strategies.

4.3

In this section, we analyze the impact of different model parameters
as follows.

Model parameter evaluation and analysis

Applied Data Science Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

0.77
0.76

0.75
0.74
0.73
0.72
0.71
0.70
0.69
0.68
0.67
0.66
0.65
0.64
0.63
0.62
0.61
0.60

Average AUC
Average AUC

20 30 40 50

Number of neighbors

60 70

(a) Number of Neighbors

70%
Percentage of training data

(b) Sample Rate

Average AUC

100% 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Number of Epochs.

(c) Epoch Number

Figure 6: Influence of Hyper Parameters

4.3.1 Number Of Neighbors. Figure 6a illustrates the results of
different numbers of neighbors of our framework compared to
baselines. We vary the number of neighbors from 10 to 80, our
method obtains significant and stable improvements over other
baselines, which testifies the robustness of our model. For online
serving, we select 30 neighbors for each PreView for performance
and storage trade-off.

4.3.2 Size Of Training Data. Moreover, we vary the percentage
of training data in the PreView Dataset. The results are shown
in Figure 6b. We randomly select 30%, 70% and 100% of training
data and evaluate the model performance on all the test data. All
experiments show improvements of the REGNN model over others.
It has also proved the robustness of the REGNN for embedding
events.

4.3.3 Number Of Training Epochs. In addition, we vary the number
of training epochs to compare different methods. The results are
shown in Figure 6c. We restrict the epoch number from 1 to 15
for all models for fair comparison. The number of offline training
epochs for REGNN is set as 100, and the performance of REGNN
continues to grow and the best performance for REGNN is obtained
at epoch number 55.

4.3.4 Modeling Units For Time Series. Here we compare the ef-
fectiveness of different modeling units in time series of events
embedding as Table 5, where M-GRU, Relu-GRU and M-Relu-GRU
are variants of GRUs proposed in [20]. Specifically, M-GRU deletes
the reset gate in traditional GRU, Relu-GRU changes the tanh activa-
tion function to Relu, and M-Relu-GRU combines the modification
in M-GRU and Relu-GRU. LSTM [11] is another kind of RNN for
sequential modeling. As shown in the table, among all the different
kinds of sequential modeling units, GRU fits REGNN the best in our
framework. Moreover, we also investigate modeling the time-series
of events as graphs, and aggregate the event embeddings through
different graph neural networks such as Pooling, GAT and GCN.
The comparison results are given in Table 5. The experimental re-
sults shows RNN outperforms other modeling units. It is in line
with our expectation that RNNs (Sequential Modeling units) can
further capture the order and dependencies between events.

3220

Table 5: Results Of Different Modeling Units On PreView
Dataset

Units AUC Units AUC

GRU 0.7684 LSTM 0.7623
M-GRU 0.7657 LSTM+Attention 0.7585
Relu-GRU 0.7630 GAT 0.7584
GRU+Attention 0.7629 GCN 0.7566
M-Relu-GRU 0.7616 Pooling 0.7593

4.4 Reproducibility Details

For offline training, we employ Keras [4] to implement REGNN and
further conduct it on a server with GPU machines. The drop-out
ratio is set to 0.2 before each layer in our implementation, and
batch normalization and layer normalization are performed before
each layer in the model. The input graph for each Preview event is
formatted as TFRecords, where the passenger subgraph, the origin
subgraph and the destination subgraph are stored as adjacent matrix
of events, and each event is described as a vector of node features.
We describe the training algorithm in detail in Section A. When
serving online, our system utilizes a Flink [1] system to: I) first
receive all the passenger events, and II) extract the node features
from events, IIT) connect the events to its neighbors, then IV) update
the heterogeneous dynamic passenger graphs, origin graphs and
destination graphs stored in a Redis server, and V) finally generate
real-time event embedding. The expiration time of keys in Redis is
set to 7 days. When deployed online for AB testing on several cities,
the QPS of our online system is 200, and the real time embedding
latency is less than 20ms at 99%.

5 RELATED WORK

Session-Based Recommendation SRGNN [30] created a directed
graph for the connections of all sessions according to chronologi-
cal relationships, and used GCN to learn item embedding for rec-
ommendations. Moreover, DGRec (Dynamic Graph Recommenda-
tion) [27] and RNN-Session [2] also conduct session based recom-
mendations, however [2] could not deal with new items, and [27]
focus on homogeneous social graphs.

Graph Neural Network Method GNNs [22] have gained a lot of
attention in recent years. GCN (graph convolutional network [15])

Applied Data Science Track Paper

uses operations on full graph Laplacian, which is designed in a
transductive setting for semi-supervised learning. GraphSAGE [10]
extents the GCN framework to the inductive setting and uses differ-
ent neural networks like LSTM to aggregate neighbors’ information.
GAT (Graph Attention Networks [26]) applies self-attention mech-
anism to measure and combine different neighbors impacts. For
heterogeneous graph, HetGNN (Heterogeneous Graph Neural Net-
work [31]) proposes using type-based neighbors aggregator and an
attention mechanism for heterogeneous types combination.

Deep CTR Method Most deep models pay attention to the inter-
action between features and follow the framework of Embedding
and Multi-Layer Perceptron (MLP). Wide&Deep [3] combines fea-
tures from wide linear representation and deep neural networks.
DeepFM [9] imposes a factorization machine as the wide module in
Wide&Deep to enhance the power of expression. Users’ historical
behavior data reveals users’ dynamic interest and has been proven
effective for CTR prediction. DIN (Deep Interest Network [33])
proposes attention mechanism to capture users’ interest. DIEN
(Deep Interest Evolution Network [32]) uses GRU refined with at-
tention mechanism and an auxiliary loss to supervise the learning
of interest evolution. MIMN (Multi-channel user Interest Memory
Network [19]) proposes a method based on memory network to
capture users’ long sequential behavior data.

6 CONCLUSIONS

In this paper, we propose a novel framework for real-time event
embedding by constructing dynamic heterogeneous graphs. Our
framework learns the embedding of new events in an inductive
way, which aggregates neighbor information from heterogeneous
graph consisting of different types of events with comprehensive
relationships. Through carefully designed GATs at different levels,
our framework captures the semantic and structural information
between events. In addition, after exhaustive experiments, we found
that RNNs are more suitable for capturing order and dependencies
between events. Our proposed framework is general and can be
applied to model different types of events (we provide another
application of the proposed framework in the supplement). After a
lot of AB experiments and analysis, our model has been deployed in
a production environment and serves tens of millions of customers
every day.

REFERENCES

[1] Apache. 2003. Apache Flink: Stateful Computations over Data Streams. https:
/Mlink.apache.org/.

[2] Hidasi B, Karatzoglou A, and et al. Baltrunas L. 2015. Session-based Recom-

mendation with Recurrent Neural Networks. arXiv preprint arXiv:1511.069397

(2015).

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st

workshop on deep learning for recommender systems. ACM, 7-10.

Francois Chollet et al. 2018. Keras: The python deep learning library. Astrophysics

Source Code Library (2018).

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of

the 23rd ACM SIGKDD international conference on knowledge discovery and data

mining. ACM, 135-144.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.

arXiv preprint arXiv:1410.5401 (2014).

Mihajlo Grbovic. 2017. Search Ranking And Personalization at Airbnb. In the

Eleventh ACM Conference.

(3]

[4

=

3221

(8]

[

[10

[11

=
)

(13

[14

[15

[16

(18

[19]

[20]

[21

[22

~
=

[24]

[25]

[26

[28

[29

[30

[31

W
S

[33

KDD 20, August 23-27, 2020, Virtual Event, USA

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855-864.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024-1034.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Chung J, Gulcehre C, Cho K, and et al. 2015. Gated feedback recurrent neural
networks. In Proceedings of International Conference on Machine Learning. 2067—
2075.

Zhou], Cui G, and Zhang Z. 2018. Graph neural networks: A review of methods
and applications. arXiv preprint arXiv:1812.08434 (2018). arXiv:1812.08434 http:
//arxiv.org/abs/1812.08434

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping Ye. 2019. AHINE: Adaptive
Heterogeneous Information Network Embedding. arXiv preprint arXiv:1909.01087
(2019).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701-710.

Qi Pi, Weijie Bian, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Practice
on Long Sequential User Behavior Modeling for Click-Through Rate Prediction.
arXiv preprint arXiv:1905.09248 (2019).

Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. 2017.
Improving speech recognition by revising gated recurrent units. arXiv preprint
arXiv:1710.00641 (2017).

Salvatore Sanfilippo. 2019. Redis: an open source (BSD licensed), in-memory data
structure store, used as a database, cache and message broker. https://redis.io/.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61-80.

Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. 2018. Heterogeneous
information network embedding for recommendation. IEEE Transactions on
Knowledge and Data Engineering 31, 2 (2018), 357-370.

Chen T and Guestrin C. 2016. Xgboost: A scalable tree boosting system. In
Proceedings of the 22th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 785-794.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067-1077.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Song W, Xiao Z, and et al Wang Y. 2019. Session-based social recommenda-
tion via dynamic graph attention networks. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. ACM, 555-563.

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Bingiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839-848.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference. ACM, 2022-2032.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence. 346-353.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
793-803.

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
5941-5948.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui
Yan, Jungi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 1059-1068.

https://flink.apache.org/
https://flink.apache.org/
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
https://redis.io/

Applied Data Science Track Paper

A SUPPLEMENT

A.1 Pseudo Code Of REGNN Training
Procedure

The pseudo code of REGNN training procedure is described in Algo-

rithm 1. Dynamic heterogeneous graphs for events are constructed

before training. Specifically, for PreView events, three different

heterogeneous graphs are constructed.

Algorithm 1 Training Procedure of REGNN

1: Input: dynamic heterogeneous graphs for events, event labels
y, iteration times iter, training batch size b, number of training

data num

2: Output: model parameters of REGNN

3 seti=0

4: repeat

50 setj=0

6: repeat

7: Sample b dynamic heterogeneous events with labels and
perform batch normalization.

8 Generate event embeddings for each event according to
Equation (4,5,6,7).

9 Compute batch loss according to Equation (10).

10: Compute gradient and update model parameters 6.

11: setj=j+b

122 until j >= num

13 seti=i+1

14: until i >= iter
15: return model parameters 0

A.2 Model Generalization To Dialogue Event
Prediction

We introduce another application at DiDi that uses the proposed
real-time event embedding framework , which is the customer ques-
tion prediction in the context of the chatbot customer service as
Figure 7. The figure illustrates the question prediction of a chatbot,
which predicts the user’s most likely clicks or questions based on
the user’s previous behavior, not only the user’s interactions with
the chatbot, but also the previous transaction behavior (e.g., placing
an order). For example, a passenger has just finished a ride-hailing
order, she may want to consult about “cost” or “lost_items" related
questions. The user will also process a series of interactions with
the chatbot, including inputting text, clicking on the questions
or answers pushed by the chatbot. We also divide these interac-
tions into several h-sessions which are separated by the event of
“Click_Question" because each click means the user’s intent is sat-
isfied partially. In order to embedding the user’s current behavior,
we also construct the user’s dynamic heterogeneous event graph
based on the user’s previous N-day historical behaviors.
Dynamic Dialogue Graph Generation Specifically, the archi-
tecture for dialogue event prediction is show in Figure 8. Moreover,
we give the dialogue event notations as Table 6. Similar to the Pre-
View event graph, for a Click_Question event CQ7 at time T, the
dynamic dialogue graph of CQr is built as described in Figure 7.

3222

KDD 20, August 23-27, 2020, Virtual Event, USA

Table 6: Dialogue Event Notations

Symbols ‘ Definitions and Descriptions
Or Order event at time T
COr Click_Question event at time T
It Input_Text event at time T
DiaGt | heterogeneous Dialogue Graph at time T
e 2 i—i
i ‘ ‘
7 » s
. : .
+ +
= - ?
|
v
*) Finish_Order (® Click_Question ‘
= Input_Text [

Figure 7: Chatbot Interaction Flow. Typically, when a cus-
tomer finished a disputed order, she may interact with the
chatbot through different actions such as Input_Text and
Click_Question.

Considering that all text inputting in an h-session

DiaGt = HetGe, (11)
where DiaGr represents the dialogue heterogeneous event graph
at time T, consisting of one heterogeneous subgraph about the
customer c. Note that for the dialogue response prediction task, we
only build one heterogeneous subgraph.

Dialogue Event Graph Embedding Similarly, as depicted in
Figure 8, given the heterogeneous graph DiaGr of dialogue at time
T, an h-session in DiaG consists of the following events, Order
Or, Click_Question event CQ7 and all the Input_Text events occur
between timestamp T — 1 and T, denoted as SIT. The GATs inside
h-session is computed as:

B©

©
CQT’h

1 VI; € SIr)

h(cl)QT = GATI(h(O)T, (12)
where h(cl)QT is the embedding after GATs inside h-sessions. After-
wards, the cross h-session GAT is:

h®

Cor (13)

= GATL.(h(Cl,)Qt), Vi, T-M<=1t<=T
where GAT, denotes cross h-session GATs operations for updated
Click_Order events, and the attention mechanism operator works
in the same way as that in the PreView event embedding.

Moreover, the GATs within h-session and cross h-session for
dialogue graphs are computed in the same way as those in the
PreView event embedding. Since we only build one heterogeneous
event graph for dialogue event, thus there is no global GATs across
subgraphs, E7 is the final embedding of event CQr.

Applied Data Science Track Paper

Heterogeneous event embedding

KDD 20, August 23-27, 2020, Virtual Event, USA

@ 0| ©
8
@@ ;

ol

GAT within h-session

CQT within h-session embedding Cor

GAT across h-sessions

PRCO I s i h® [T —

Somsll

GRU Sfull

. softmax label
connection '

Figure 8: Heterogeneous Graph Embedding of Dialogue Event. One heterogeneous interaction graph is built for Click_Question

event embedding, and GATs at different levels are utilized.

Specifically, for dialogue response prediction, the objective is as
follows:

T Nc
L== "3 3ik , logPu,i(y = k) + AlIoll
uel t=1 k=1 (9 hu) (14)
explUf +
Pury =) = S
22 exp(6) - h)
where illj’ ; is an indicator function, if the target class of user u

and time ¢ is k, then i’lj ; is set to 1, else is set to 0. N is the total
number of classes in a multi-classification problem. P, ;(y = k)
computes the probability of u at time ¢ for label k in a softmax
manner, 6 represents the parameters to learn, and A||0||, is the L2
regularization of parameters. Obviously, we can change the loss
function to RMSE error to learn regression problems for other kind
of prediction tasks.

A.3 Experimental Results On Dialogue

Dataset For training dialogue event embedding, we adopt customer
dialogue log of 1 week for dialogue heterogeneous graph construc-
tion, and adopt no more than 10 recent events. We randomly select
177325 samples as training set and 34126 samples as test set. The
feature size for each sample is 201 and the number of classes is 403.

Content Features For an event(actually a heterogeneous graph)
in the dialogue flow, it contains basic features of order, Click_Question
embedding, Input_Text embedding, and neighbors from it’s latest
events. We apply AHINE(Adaptive Heterogeneous Information
Network Embedding [16] to get Click_Question embeddings and it
is a network embedding method for heterogeneous graph which
models the edges by deep learning. And we use word2vec [17] for
Input_Text embddings.

Experiment Setup The number of neighbors in REGNN for for
dialogue dataset is 10 (including last 10 Click_Question events and
their correponding Input_Text events). And the number of our pre-
trained embedding dimension is 30. Similar to the setup in PreView,
we use Adam [14] with learning rate at 0.001 for all models. The
number of hidden dimension of GRU in our method is set to 100.
The DNN Layer is set to 128 X 64 X 32 before the output layer.

Baseline Settings For PreView the input is sequences of node
features of PreViews. For dialogue, the input is the sequence of pre-
trained Click_Question and Input_Text embeddings. We use the
same input features and embeddings for all baselines. For SRGNN,
the origin output layer’s dimension is determined by size of items, in

3223

our framework it’s changed to fully connected layer with dimension
of classification numbers, followed by a softmax layer.

Software & Hardware We employ Keras[4] to implement REGNN
and further conduct it on a server with GPU machines.

Offline Performance The offline results are given at Table 7,
from which we can see REGNN significantly outperforms other
baseline methods.

Table 7: Performance Of Different Methods On Dialogue
Dataset

Method Accuracy(mean =+ std)

DNN 0.2749 % 0.0056
DIN 0.2765+ 0.0071

DIEN 0.2833+ 0.0027
MIMN 0.2855+ 0.0035
SRGNN 0.3249+ 0.0209
REGNN 0.3783 = 0.0023

Online Performance Note that our framework is also deployed
online for customer service. Specifically, our online prediction
model for customer dialogue response prediction is a DNN based
model and the REGNN embedding works as input features of the
model. The online effectiveness of REGNN is obtained through
online AB test. The AB test results show that: the click through rate
of the questions increases 8.3%, and the rate of problems solved im-
proves 1.7%. Consequently, the rate of customer turning to manual
services drops 1.4% (the lower the better), which indicates better
service of our intelligent chatbot service. Since the number of cus-
tomers turning to manual help is reduced, the labor cost of customer
service is also greatly reduced. As a matter of fact, our dialogue
event embedding service helps the prediction of user question se-
lection and customer tagging service, etc.

Discussion Similar to the online PreView embedding architec-
ture, the online architecture of Dialogue event embedding also
consists of two parts: I) Dynamic Graph Construction and II) real-
time embedding. Once a customer clicked a question, the event was
immediately added to the customer graph and connected to its pre-
vious heterogeneous neighbors. Afterwards, real-time embedding
service updates the event embedding. The whole online service
is event driven, making it latency free for real-time down-stream
prediction. Future work includes adding more events for embed-
ding (such as customer comments, customer complaints, etc.), and
subgraphs (e.g., complained user graph).

	Abstract
	1 Introduction
	2 PROBLEM FORMULATION
	2.1 PreView Conversion Prediction

	3 METHODOLOGY
	3.1 Dynamic Heterogeneous Graph Construction
	3.2 PreView Event Graph Embedding
	3.3 Event Time-series Embedding
	3.4 Objective And Model Training

	4 EXPERIMENTS
	4.1 Offline Experiment Results
	4.2 Online Results
	4.3 Model parameter evaluation and analysis
	4.4 Reproducibility Details

	5 RELATED WORK
	6 CONCLUSIONS
	References
	A Supplement
	A.1 Pseudo Code Of REGNN Training Procedure
	A.2 Model Generalization To Dialogue Event Prediction
	A.3 Experimental Results On Dialogue

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 11
 Mask co-ordinates: Horizontal, vertical offset 44.60, 719.89 Width 522.82 Height 20.87 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 11

 CurrentAVDoc

 44.5959 719.8875 522.8154 20.8747

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 10
 11
 10
 10

 1

 HistoryList_V1
 qi2base

